Nitrate Reduction and Assimilation in Chlorella
نویسندگان
چکیده
1. Nitrate reduction and assimilation have been studied in Chlorella pyrenoidosa under growth conditions by observing effects on the CO(2)/O(2) gas exchange quotient. 2. During assimilation of glucose in the dark, nitrate reduction is noted as an increase in the R.Q. to about 1.6 caused by an increased rate of carbon dioxide production. 3. During photosynthesis at low light intensity nitrate reduction is evidenced by a reduction in the CO(2)O(2) quotient to about 0.7 caused by a decreased rate of carbon dioxide uptake. 4. Chlorella will assimilate nitrogen from either nitrate or ammonia. When both sources are supplied, only ammonia is utilized and no nitrate reduction occurs. It is inferred that under the usual conditions of growth nitrate is reduced only at a rate required for subsequent cellular syntheses. The effect of nitrate reduction on the CO(2)O(2) quotient therefore provides a measure of the relative rate of nitrogen assimilation. 5. Over-all photosynthetic metabolism may be described from elementary analysis of the cells since excretory products are negligible. The gas exchange predicted in this way is in good agreement with the observed CO(2)/O(2) quotients.
منابع مشابه
Evaluation of Guanidium Thiocyanate as a Chemical Mutagen on the Expression of Nitrate Reductase Gene (NR) in Chlorella Sp., NTMP04
Nitrate is the predominant form of inorganic nitrogen utilized by higher plants, fungi and algae and its assimilation forms the major pathway for production of biologically useful nitrogen. Chlorella is a unicellular eukaryotic green alga, which offers a potentially useful system for the expression of hetrologous proteins. In the present study the microalgal samples were isolated from stagnant ...
متن کاملMetabolic Conditions in Chlorella
1. The effect of nitrate reduction and assimilation on the CO(2)/O(2) quotient of gas exchange has been used as an index of the relative rates of carbon and nitrogen assimilation in Chlorella pyrenoidosa. Changes in over-all metabolism induced by starvation, high light intensity, and nitrogen deficiency have been studied in comparison with the metabolism of cells growing at light-limiting inten...
متن کاملRole of molybdenum in nitrate reduction by chlorella.
Molybdenum is absolutely required for the nitrate-reducing activity of the nicotinamide adenine dinucleotide nitrate reductase complex isolated from Chlorella fusca. The whole enzyme nicotinamide adenine dinucleotide nitrate reductase is formed by cells grown in the absence of added molybdate, but only its first activity (nicotinamide adenine dinucleotide diaphorase) is functional. The second a...
متن کاملPartitioning of nitrate assimilation among leaves, stems and roots of poplar.
Plants differ in tissue localization of nitrate reduction and assimilation. Some species reduce nitrate primarily in the leaves, whereas other species localize nitrate reduction and assimilation in the roots. We determined how nitrate assimilation is partitioned among leaves, stems and roots of poplar (Populus tremula L. x P. alba L.) by comparing tissue differences in in vivo nitrate reductase...
متن کاملThe effects of glucose, nitrate, and pH on cultivation of Chlorella sp. Microalgae
BACKGROUND AND OBJECTIVES: Bioenergy is a phenomenon that has attracted humans’ attention for about a century. The desirable biological properties of chlorella sp.microalgae have turned it to one of the most ideal options for the production of biodiesel. However, the economic issues must be taken into account in its industrial scale production. The present study aims t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 32 شماره
صفحات -
تاریخ انتشار 1948